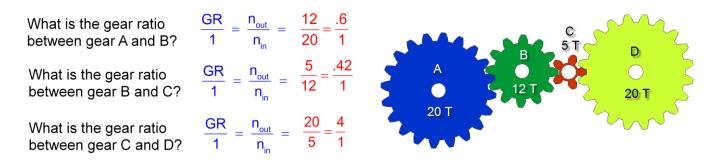
Principles of Engineering

Unit 1.1.5 – Mechanisms - Gears, Pulley Drives, and Sprockets

Mechanisms used to transfer energy through motion.	
Change the of rotation.	
Change the of rotation.	>
Change the amount of available to do work.	7
Gears	
A gear train is a mechanism used for transmitting rotary motion and torque through interlocking	•
A gear train is made when two or more gears are	
gear causes motion.	
Motion is transferred to the gear.	
Mating gears always turn in directions.	
An gear allows the driver and driven gears to rotate in the same direction.	0
Mating gears always have the same size (diametric pitch).	
The rpm of the larger gear is always than the rpm of the smaller gear.	
Gears locked together on the same shaft will always turn in the direction and at the r	pm.
Gear Ratios	
Variables to know:	
$n = \underline{\hspace{1cm}} \omega = \underline{\hspace{1cm}} (speed) \tau = \underline{\hspace{1cm}}$	
** Subscripts in and out are used to distinguish between gears **	
n _{in} =	
d _{in} =	
$\omega_{\text{in}} = \underline{\hspace{1cm}}$ $\omega_{\text{out}} = \underline{\hspace{1cm}}$	
τ_{in} = $ au_{out}$ =	


Equations to know
$$GR = Gear \ Ratio$$

$$GR = MA$$

$$\frac{GR}{1} = \frac{n_{out}}{n_{in}} = \frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}}$$

$$\frac{1}{2} \frac{12}{6} \frac{4in}{2in} \frac{40ipm}{20ipm} = \frac{80ft-lb}{40ft-lb}$$

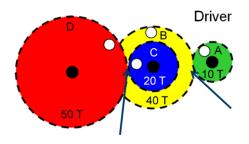
Gear Ratios

What is the TOTAL gear train gear ratio?

$$\frac{0.6}{1} \bullet \frac{0.42}{1} \bullet \frac{4}{1} = \frac{1}{1}$$

If gear A and D were directly connected to each other, what would the resulting gear ratio be?

$$\frac{GR}{1} = \frac{n_{out}}{n_{in}} = \frac{20}{20} = \frac{1}{1}$$


What would the total gear ratio be if the last gear had 40 teeth?

$$\frac{0.6}{1} \bullet \frac{0.42}{1} \bullet \frac{8}{1} = \frac{2}{1} \text{ or } \frac{GR}{1} = \frac{n_{out}}{n_{in}} = \frac{40}{20} = \frac{2}{1}$$

Compound Gear Train

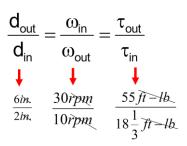
The two middle gears share a ______, so they rotate at the same speed.

This allows the final gear to rotate _____ and produce more _____ than if it were connected only to the driver gear.

What is the gear ratio between gear A and B?

$$\frac{GR}{1} = \frac{n_{out}}{n_{in}} = \frac{40}{10} = \frac{4}{1}$$

What is the gear ratio between gear C and D?

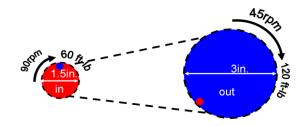

$$\frac{GR}{1} = \frac{n_{out}}{n_{in}} = \frac{50}{20} = \frac{2.5}{1}$$

What is the gear ratio of the entire gear train?

$$\frac{4}{1} \bullet \frac{2.5}{1} = \frac{10}{1}$$

Pulley and Belt Systems

Equations:



18 1/3

$$d = \underline{\hspace{1cm}} \omega = \underline{\hspace{1cm}} (speed) \qquad \tau = \underline{\hspace{1cm}}$$

Sprocket and Chain Systems

$$\frac{\mathsf{n}_{\mathsf{out}}}{\mathsf{n}_{\mathsf{in}}} = \frac{\mathsf{d}_{\mathsf{out}}}{\mathsf{d}_{\mathsf{in}}} = \frac{\omega_{\mathsf{in}}}{\omega_{\mathsf{out}}} = \frac{\tau_{\mathsf{out}}}{\tau_{\mathsf{in}}}$$

$$\frac{22}{11} \quad \frac{3in.}{1.5in.} \quad \frac{90rpm}{45rpm} \quad \frac{120ft - lb}{60ft - lb}$$

$$n = number\ of\ teeth$$
 $d = diameter$ $\omega = angular\ velocity\ (speed)$ $\tau = torque$

$$\tau = torque$$

Comparing Pulleys and Sprockets

	Pulley	Sprocket
Method of Transmitting Force		
Advantages	Quiet, no lubrication needed, inexpensive	No slip, greater strength
Disadvantages	Can slip	Higher cost, needs lubrication, noisy